Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Tradit Chin Med ; 42(3): 332-343, 2022 06.
Article in English | MEDLINE | ID: covidwho-2301540

ABSTRACT

OBJECTIVE: To investigate the and studies of natural compounds and medicinal plants with anti-coronavirus activity. METHODS: A systematic review was performed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Animal Research: Reporting of experiments guidelines to find data for medicinal plants and natural products effective against human coronaviruses in or studies. Studies published up to September 6, 2020 were included. Studies ( or ) reporting the effect of medicinal plants and natural products or their derivatives on human coronavirus were included RESULTS: Promising anti-coronavirus effects are seen with different herbal compounds like some diterpenoids, sesquiterpenoids, and three compounds in tea with 3CLpro inhibiting effect of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV); Hirsutenone, Six cinnamic amides and bavachinin are PLpro inhibitors and Tanshinones are active on both 3CLpro and PLpro. Some flavonoid compounds of Citrus fruits act on Immun-oregulation and target angiotensin-converting enzyme 2 which is used by SARS-COV for entry. Virus helicase is possibly inhibited by two compounds myricetin and scutellarein. CONCLUSION: This review shows that complementary medicine have the potential for new drug discovery against coronavirus. Further research is needed before definitive conclusions can be made concerning the safety and efficacy of the use of these medicinal plants.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Plants, Medicinal , Severe acute respiratory syndrome-related coronavirus , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Humans , SARS-CoV-2
2.
Redox Biol ; 59: 102563, 2023 02.
Article in English | MEDLINE | ID: covidwho-2132216

ABSTRACT

BACKGROUND: The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD: The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS: CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION: SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/metabolism , Reactive Oxygen Species/metabolism , Leukocytes, Mononuclear/metabolism , Oxidation-Reduction , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL